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We sought to simulate auxetic behavior by carrying out
dynamic analyses of mesoscopic model structures. We be-
gan by generating nearly periodic cellular structures. Four-
node “Shell” elements and eight-node “Brick” elements are
the basic building blocks for each cell. The shells and bricks
obey standard elastic-plastic continuum mechanics. The dy-
namical response of the structures was next determined for
a three-stage loading process: (1) homogeneous compression;
(2) viscous relaxation; (3) uniaxial compression. The simula-
tions were carried out with both serial and parallel computer
codes—DYNA3D and ParaDyn—which describe the deforma-
tion of the shells and bricks with a robust contact algorithm.
We summarize the results found here.

I. INTRODUCTION

Auxetic behavior—negative Poisson’s ratio—is unusual but
real. Relatively porous solids, such as the copper foam shown
in Fig. 1 are auxetic [1]. Mesoscopic models for such mi-
crostructures, based on regular arrays of elements, can be
auxetic too [2,3]. The models considered so far have generally
been relatively simple, so as to facilitate theoretical analyses.
Here we consider a more complex class of models, well-suited
to numerical simulation and exploration. The underlying full-
density “matrix material” is simple, obeying Hookean linear
elasticity (Young’s modulus E = 100 and Poisson’s Ratio
v = 0.25) up to a yield strength (Y = 0.1 = E/1000), be-
yvond which the continuing response to deformation becomes
“plastic” ( and “irreversible”).

By building up nearly-regular cell structures using this ide-
alized elastic-plastic material we can create highly irregular
compressed structures. When these structures are relaxed,
to a local energy minimum, further longitudinal deformation
can be analyzed for auxetic behavior. That is, squeezing in
the z direction should result in proportional shrinkage in the
y and z directions. Because a wide range of materials and cell
structures give rise to auxetic behavior in the laboratory we
expected that relatively simple models should do so too. This
paper describes our search for auxetic behavior. In Sec. 1T we
review the microscopic approach, which points out the need
for a macroscopic continuum approach to auxetic materials.

Sec. III is a review of the underlying continuum mechanics.
Sec. IV describes the details of the numerical solution of the
continuum equations. Sec. V describes our choices of initial
and boundary conditions. Sec. VI is devoted to results and
Sec. VII to our conclusions. Sec. VIII is a well-deserved
acknowledgment of some of the debts we have incurred to
the workshop organizer, Krzysztof Wojciechowski. Kris facil-
itated and supervised both the social and the scientific aspects
of the stimulating workshop at which our material was pre-
sented.

II. MICROSCOPIC STATISTICAL MECHANICS
AND MOLECULAR DYNAMICS ‘

No doubt the fundamental basis of macroscopic thermo-
dynamic and hydrodynamic behavior is microscopic, as was
detailed by Boltzmann and Gibbs. They developed “statisti-
cal mechanics”. The statistical mechanics of atomistic mass-
m particles, interacting with pairwise potential energies ¢(r)
which provide central forces F(r) and a dynamics, m# = F,
which can be simulated with standard integration methods,
was worked out independently by these two men. Further
elaborations of their ideas were made necessary when fast
computers, able to simulate the many-body problem, became
available around the time of the Second World War. Fermi,
Alder, and Vineyard were responsible for pioneering simula-
tions in the new field of “molecular dynamics”. For a brief
history see the review by Hoover [4].

By 1967 computers were able to solve deformation prob-
lems involving the correlated motions and interactions of a
few thousand particles. Shockwaves converting a cold solid
into a hot fluid were simulated [5]. Simpler problems were
considered. In considering them, it was natural to choose to
describe the existing macroscopic formalism for elasticity in
a form suitable for evaluation using molecular dynamics. Be-
cause molecular dynamics describes temperature (in terms of
the kinetic energy of the moving particles) a description of
the temperature dependence of the elastic response to strain
became possible. In 1969 Hoover, Holt, and Squire developed
a thermal microscopic description of the elastic constants in
terms of the classic static-lattice sums (which they called the
“Born” terms in recognition of Max Born’s contributions to



elasticity) along with “fluctuation terms” taking thermal ef-
fects into account [6,7].

By 1989 it was feasible to carry out simulations with as
many as a million atomistic particles [8-10]. Elastic-plastic
indentation problems, in two and three dimensions, with both
pair and many-body potentials, were carried out then. By
1992 realistic simulations of the indentation of silicon ap-
peared. Fig. 2 is taken from the cover of the March/April
1992 issue of Computers in Physics. In the figure the inden-
tation pits obtained using atomistic and continuum versions
of a tetrahedral indentor are compared. In both cases the
solid indentor penetrates a fully-atomistic workpiece. Fig. 3
shows two-dimensional simulations of precision metal cutting,
from this same era [10]. Several of these early simulations
represented metals by using the many-body embedded-atom
potential [11]. In all of this early work careful attention was
paid to the development of useful boundary conditions and to
the analysis of quantitative measures of the simulation results.
Even in two dimensions (and certainly in three) it was readily
apparent that problems involving the plastic deformation of
macroscopic bodies were best treated by continuum mechan-
ics. Molecular dynamics takes too long. Not only the spatial
and temporal limitations of molecular dynamics, but also the
lack of fundamental information on atomistic forces, suggest
still today that the macroscopic approach will be with us for
the forseeable future. We turn to the simplest form of the
macroscopic description in the next Section.

III. CONTINUUM DYNAMICS

Continuum dynamics describes the time development of
matter with continuously differentiable velocities v, stress ten-
sors o, and energy densities e. The fundamental (partial
differential) equation describing the motion of a continuum
comes from momentum balance [12]. It gives the acceleration
field in terms of gradients of the local stress-tensor compo-
nents:

pr=V.o.

The “comoving” time derivative 0 is the time rate of change
of velocity v for a particular volume element. In principle
the volume element is infinitesimal. Such a derivative is also
the natural choice for a numerical method which divides the
continuum into small but finite “Lagrangian zones” (or “finite
elements”) so as to reduce the number of degrees of freedom
to a manageable number.

A well-posed continuum problem requires a relation giving
the stress tensor o for the material in terms of the other state
variables (energy, density p, strain ¢, ...). For simplicity we
begin by considering an elastic equation of state, with stress
proportional to strain. It is usual to write this equation of
state in terms of the Lamé constants A and 7 or in terms of
the Bulk and Shear Moduli B and G,

2
B=XA+ 375 G=n.
The linear elastic equation of state relates stress to the strains,
which are symmetrized deformation gradients:

€z = duz Jda ; €yy = duy/dy ; €. = du./dz ;

€2y = dug /dy + duy /dz |

€ye = duy /dz + du. [dy ;

€2z = du; /dz + duz /dz .
For large deformations the extent of deformation » becomes
ambiguous. For that reason, in practical calculations the
time derivatives of these equations (expressing the strain rates
in terms of velocity gradients) are integrated instead. The
stresses (integrated stress rates) from these strain rates need
to be defined so as to be symmetric also. A symmetric stress

tensor is necessary for a mechanically stable treatment of ro-
tation [13]:

Oz = Qﬂﬁmx + /\(fzz + €yy + fzz) )

Oyy = 2jeyy + A€z + €yy + €22)
Oz = 2n€z; + Mezn + €yy + €22) ;
Ozy = Oyz = T€zy ;

Oyz = Ozy = N€yz
O2z = Ogz = T€zz .

Now consider an application of elastic theory to the charac-
terization of auxetic materials. Compress an otherwise stress-
free cylinder in the z direction. By setting the transverse
stresses oy, equal to zero, and assuming cylindrical symme-
try, (eyy = €.2), we can relate the definition of Poisson’s Ratio
v (minus the ratio of the transverse to the longitudinal strain)
to the Lamé constants and the moduli:

v=—€yy/ezz = A(2n+2X) ;
B=X+(2/3)n;
2 2
v=(B~-3n)/2B+3m) .
Poisson’s ratio is restricted in range by the requirements that

both the Bulk and Shear moduli be positive:

O<B,G<oo—>—1<1/<%

Equivalently, the fraction A/ must exceed 32:

B st
7 3
Typical values of % and v are:

-10 0 +5 +8 +10

133333 vl o)

We use the simplest model for plasticity, in which an ef-
fective shear stress oes cannot exceed a fixed (constant) yield
strength Y:

1 1 1
Oeff = [5{‘7“ - C"yy)z + 5(0’1'?; . Uzz}2 + ‘2“(523 - 013)2+

202, + 202, +20%,)F <Y .

With the specification of Young’s modulus, Poisson’s ratio,
and the von Mises’ yield strength, the constitutive properties
of a simple “elastic-perfectly plastic” model are complete.



IV. DISCRETIZATION OF THE CONTINUUM
IN DYNA3D AND PARADYN

The serial and parallel computer codes, DYNA3D and
ParaDyn, need a list of nodes and a list of elements, a con-
nectivity (nearest-neighbor nodes) list, as well as initial and
boundary conditions. Each of the nodes has its own coor-
dinates, which can vary with time. Each element is made
up of one or more nodes. We describe the continuum struc-
ture in terms of simple elastic “shell” or “brick” elements.
Each shell element corresponds to four nodes. Bricks require
eight nodes. We choose an initial brick size 1 x 1 x 1. For
convenience we choose the size of the individual shells to be
1 x 1 x 0.1, where the shell thickness 0.1 is again arbitrary.
The shells can be treated by a wide variety of models. We
have used two of the most popular choices available in DYNA,
Hughes-Liu and Belytschko-Tsay. The shells are arranged in
“panels” of 2 x 2,4 x 4,8 x 8, ... shells. Our models based on
brick elements have cubic vacancies.

Both kinds of meshes can be generated easily. Annxnxn
array of nodes without any vacant portions corresponds to
3n(n —1)? shells or (n — 1)* bricks. It is simplest to generate
all of these elements first, and then to discard from the list
those necessary to make a regular array of vacancies. [t is
quite practical to consider vacancies covering the same volume
as do 2%, 4%, 8%, and 16 elemental bricks. The elements are
initially arranged in periodic arrays such as the two shown in
Fig. 4. Prior to deformation small random displacements, of
order one percent of the shell or brick size, are applied to all
of the nodes.

“Contact algorithms” prevent or limit the interpenetration
of elements. This can be accomplished by Lagrange Multipli-
ers (which enforce the corresponding geometric constraints)
or by using conditional Hooke’s Law springs (which force any
overlapping elements to separate). We have used both ap-
proaches in our simulations and found no significant differ-
ences. Likewise, for the two distinct shell-element models, we
found no significant differences between them.

V. DEFORMATION OF THE MODEL

‘We deform the model by applying accelerations to all of the
surface nodes in a “compression phase”. The accelerations are
chosen to be proportional to the initial separation of the node
from the center of mass, and to a piecewise linear function of
a reduced time variable, chosen here to vary from —2 to 2:

—2<t< -1 —Focr(0)|[+t+2];

-l1<t<+1 —7Focr(0)[-t+0];
+1 <t <42 —Focr(0)[+t—2].

See Fig. 5 for a summary of the displacements and veloci-
ties which accompany these accelerations. In most cases we
have arbitrarily chosen the time scaling and proportionality
constant so that the side length at ¢ = +2 is ten percent
less than that at ¢t = —2 for shells, and twenty percent less
for bricks. The compression is carried out over a period of
several sound traversal times.

Once this plastic deformation has been carried out a sec-
ond “relaxation phase” is imposed on the structure. The re-
laxation is carried out by zeroing all the velocities at integral
multiples of 100dt. This ad hoe procedure was chosen because
DYNA3D does not have a dynamical damping which is use-
ful for this class of problem. A third and final “deformation
phase”, in which the accelerations are applied only in the x
direction, with an amplitude 100 times smaller than those of
the compression phase, is applied last of all. The response of
the structure to this last deformation can then be analyzed
to determine Poisson’s ratio for the compressed and relaxed
material.

Throughout, the motion is approximated by a second-order
Runge-Kutta “midpoint” integration. For the two coupled
ordinary differential equations # = v ;0 = a(r, v) this integra-
tion algorithm is as follows:

!

T =r+v% ; v'zv-ﬂ-a(r,v)%;

r=r+v'dt; v=v+a(r, v)dt.

DYNA3D and ParaDyn simulations solve equations for the
time development of the nodal coordinates and velocities, the
stresses for each element (by integrating the corresponding
strain-rate tensor in time and applying the von Mises plas-
tic yield condition as needed), and the plastic strain for each
element(proportional to the irreversible work done on that el-
ement). The detailed models for shell elements are relatively
complicated [14]. Interpolations within brick elements are
carried out with a simple isoparametric representation. Func-
tion values inside an analogous square, with —1 < z,y < +1
would be computed as follows:

i = fz,y) =

FUZU =)0 —g) + (1 - 2) 1+ )+

frA+2)1-y+ ff1+)1+y).
It must be understood that the z and y coordinates in this
interpolation are constants and do not vary with time.

The graphical data are plotted as the program progresses
by a special program GRIZ. GRIZ reads the data files gen-
erated by DYNA3D or ParaDyn. Both DYNA3D and GRIZ
are available from the United States Government’s Energy
Science and Technology Software Center in Qak Ridge, Ten-
nessee. Typical results from the simulations appear in the
next Section.

VI. RESULTS

The most useful diagnostic tools for these problems were
(1) animated views of the overall structure, (2) time histo-
ries of the coordinates for particular nodes, and (3) the time
history of the kinetic energy. DYNA3D and ParaDyn allow
for the use of several “materials” in a simulation, and the
accompanying graphics package GRIZ allows the analyst to
look at particular sets of materials. This makes it easy to see
“cutaway” views of the structure, as well as cross sections.
The simplest application of this feature is to term all those
elements subject to external forces “Material 1”7 and the rest



“Material 2”. A graphic display, restricted to Material 2, then
shows only the interior of the deforming material. See Figs.
6, 7, and 10 for examples.

Because the defining property of auxetic materials is their
unusual response to longitudinal loading it is useful to com-
pute the strains {eca, €yy, €5 }. Overall strains can be defined
in terms of differences of boundary-particle coordinate sums
(those on the positive z face minus those on the negative z
face, divided by the original value of the difference of these
sums, gives €zz + 1).

All of our simulations treated cubes of material subject to
external loads on their faces. A better treatment would be
to use periodic boundaries. That approach would provide
smoother results, with reduced rate dependence. In a periodic
deformation the central cube of material would be deformed
by periodic images translated in space. These boundary con-
ditions are the typical ones for molecular dynamics, but are
not available options in most solid-mechanics computer codes.

We carried out quite a variety of simulations in search-
ing for auxetic behavior. The first two weeks of our search
were fruitless, but eventually the structures and procedures
described here were successful. In this work we record only
a few observations. It is quite practical to run simulations
with some tens of thousands of elements on a work station.
Typical runtimes on such a serial machine are of order sev-
eral microseconds per element timestep. Thus a work-station
run of 100,000 steps with N elements would be executed in
approximately N seconds of computer time.

At Livermore it is quite feasible, though a bit tedious, to
reduce these times by a factor of order 100, by assigning a
simulation to several processors. Fig. 8 illustrates the as-
signment of a 65 x 65 x 65-node problem to 32 processors.
To check the sensitivity of the results we found we varied the
Poisson’s ratio of the matrix material, the rate of compression,
the shear modulus, and the amplitude of the initial pertur-
bations. Of all of these, the results are most sensitive to the
perturbations. Fig. 9 shows the displacements of a typical
node during the third-stage small deformation used to deter-
mine Poisson’s Ratio for the deformed cellular material. The
structure is shown in Fig. 10. The effective Poisson’s ratio
for this multishell structure is changed, from -0.1 to -0.4, by a
decrease in the random displacements from the range +£2.5%
to the range +0.5%.

We carried out several simulations involving brick elements.
See Figs. 7 and 11 for examples. Despite varying the thickness
of the partitions between empty cells (one, two, or three bricks
thick) and the size of the cells (1 x 1 x 1 to 40 x 40 x 40)
we have not yet (midJuly, 2004) found auxetic behavior for
the brick structures. In the structure shown in Fig. 11 the
loads were applied directly to the outer nodes shown in the
figure. In our earlier work the loads were applied to an outer
complete skin of brick elements, but that boundary condition
was more sensitive to hourglass instability, and we abandoned
it. Because a large number of bricks can serve as a surrogate
shell there is no doubt that we will eventually find auxetic
behavior for the brick structures too.

VII. CONCLUSIONS

Our simulations are insensitive to the numerical algorithms
used to represent the underlying brick and shell elements, so
that one can use the continuum codes with confidence. Indi-
vidual cells made up of shell elements, when severely buckled,
exhibit auxetic behavior. The details of this behavior, for the
loading rates we used, are sensitive to the small perturbations
from ideal symmetry used in the initial conditions. The most
negative Poisson’s Ratio found in our exploratory calculations
(most of which used a matrix Poisson’s Ratio of 1) was —0.4.
See again the right side of Fig. 9.

We conclude that auxetic materials are an ideal problem
for parallel computation. The problems are nonlinear and
chaotic, with the results mostly not known in advance, and the
simulations are relatively quick and inexpensive. We expect
that the future will lead to a systematic understanding of
auxetic behavior supported by computer simulations.

Overall, we conclude that DYNA3D and ParaDYN are use-
ful research tools for predicting auxetic behavior. A number
of improvements could be made to DYNA3D and to Para-
DYN to facilitate further work. Periodic boundary conditions
would be very useful for exploring the response of anisotropic
complex structures. Isotropic cell structures (as opposed to
those with cubic symmetry) could be developed. One way to
do this would be to base a continuum mesh on the structure
of a typical atomistic fluid, taken from a molecular dynamics
simulation. Beam elements which prevent contact would be
particularly welcome in modeling the auxetic foams remaining
after the evaporation of nominally-spherical bubbles.

VIII. AFTERWORD

The workshop, with its opportunities to meet with a distin-
guished set of international scholars, to celebrate Krzysztof’s
Professorship, and to enjoy the elegant hospitality of the In-
stitute for Mathematics at Bedlewo, were real highpoints of
2004 for WGH.
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FIG. 1. Auxetic copper foam, as shown in Ref. 1.

FIG. 2. Indentation pits, for the adiabatic motion of both
smooth and atomistic indentors, as detailed in Ref. 9.

FIG. 3. Cutting of pair potential (at the left) and metal-
lic embedded-atom potential (at the right) crystals using
nonequilibrium molecular dynamics, as described in Ref. 10.
Particles with above-average energies are shaded.

FIG. 4. Prototypical cellular structures, built up from shell
elements (on the left) and brick elements (on the right). The
external skin of elements, to which boundary forces are ap-
plied, is not shown here.

FIG. 5. The piecewise-linear dependence of accelera-
tion on time used to deform and stress shell-element and
brick-element structures. The amplitude of the final defor-
mation is 100 times smaller than that of the initial inelastic
deformation. The integrated velocity and displacement cor-
respond to this acceleration function are also shown.

FIG. 6. Deformed auxetic structure, composed of 208,896
shell elements. The undeformed structure is shown at the left
side of Fig. 4. Here the outermost “skin” of surrounding shell
elements, to which the loads were applied, is not shown.

FIG. 7. Deformed structure (not auxetic), made up of
32,851 brick elements. The undeformed structure is shown
at the right side of Fig. 4. Here the outermost skin of sur-
rounding brick elements, to which the loads were applied, is
not shown.

FIG. 8. The partition of a 65 x 65 x 65 node problem over 32
processors. Nodes belonging to elements on the boundaries of
the processors’ partitions are shared between the correspond-
ing processors. Here the external skin of elements is shown.

FIG. 9. Longitudinal and transverse displacements of a
(typical) boundary node for the structure shown in Fig. 10.
At the left, with an effective Poisson’s Ratio of -0.1, the ini-
tial random displacments were five times larger than those
generating the more-negative effective Poisson’s Ratio of -0.4
shown at the right. See the text for details.

FIG. 10. The structure corresponding to the displacements
shown in Fig. 9. Young’s modulus, the yield strength, and
Poisson’s ratio were equal to 100, 0.10, and 0.25, with com-
pressive strains of 0.10 in the z, y, and z directions. The
external skin of shell elements is not shown here. The total
number of shell elements in the structure is 52,224.

FIG. 11. Deformation of a structure made up of 259,712
brick elements. Here the external loads were applied directly
to the outer surfaces shown in the figure, with no external
skin. Young’s modulus, the yield strength, and Poisson’s ratio
were equal to 100, 0.10, and 0.25, with compressive strains
of 0.20 in the z, y, and z directions. The behavior of this
structure is not auxetic.
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